基于机器学习的隧道工程沉降预测研究
赵 兵
(中交二公局第四工程有限公司,河南 洛阳 471000)
摘 要: 隧道工程中的沉降分析对于隧道结构的整体稳定性及安全性具有重要意义,而通过机器学习算法可较好地对隧道工程施工引起的沉降进行有效预测。研究展示了机器学习算法(BP、GA-BP神经网络模型)在隧道工程沉降预测中的具体应用过程,总体分为4个阶段:隧道工程相关参数预分析、明确机器学习模型最佳参数、机器学习模型精度分析和隧道工程沉降量预测。通过对隧道工程相关数据进行分布特征研究,比较了BP、GA-BP神经网络模型的预测性能。结果表明,掌子面情况、开停状态、厚度、地下水位与地表沉降之间存在相对显著的相关性,同时这4个参数也是影响地表沉降的主要因素;基于PCA主成分分析法可较好地进行隧道工程盾构施工影响因素表征,通过主成分1和主成分2可较为全面地表征12个特征的分布规律;BP、GA-BP神经网络模型可较好地描述隧道工程盾构影响因素和地表沉降量之间的关系,且GA-BP神经网络模型预测精度更高,建议采用GA-BP神经网络模型对地表沉降进行表征分析。
关键词: 隧道工程; 机器学习; 主成分分析; 沉降分析